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You can download the slides from www.cns.nyu.edu/malab (News), so no 
need to frantically copy/photograph them. Probably better to follow along.

On an entirely unrelated note, if you want to set up #growingupinscience 
in your own department, here are some pointers: 

www.growingupinscience.com (Get involved)



Seriously, a tutorial?

Focus on motivation and methods

not on results

And I’ll make you work



Multisensory perception 
Visual working memory 
Categorization 
Visual search 
Perceptual organization 
Horizontal-vertical illusion 
Aperture problem 
Proactive interference 
Word recognition memory 
Confidence ratings 
Smooth pursuit eye movements 
Information sampling in a trust game 
Choosing between cookies and chips 
Exploration/exploitation 
Playing strategy games 
Monkeys determining which female to mate with based on the 
color of her face

One can build a respectable career 
on a relatively limited skill set.

15 years of modeling of behavior



From Ma lab survey by Bas van Opheusden, 201703
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From Ma lab survey by Bas van Opheusden, 201703



“The purpose of models is not to fit the data but to sharpen the 
questions.”

“If a principled model with a few parameters fits a rich behavioral 
data set, I feel that I have really understood something about the 
world” — Wei Ji Ma, CCN Tutorial, 2017

— Samuel Karlin, R.A. Fisher Memorial Lecture, 1983



Agenda
1.Model building 

2.Model fitting 

3.Model comparison



Part 1: Model building



1a. What kind of model - descriptive or process? 
1b. A special kind of process model - Bayesian 
1c. Prior examples: visual illusions 
1d. Likelihood example: Gestalt perception 
1e. How to actually do Bayesian modeling?



1a. What kind of model?
Descriptive model: summary of the data in a function 
with (usually a small number of) parameters
• Psychometric curve: cumulative Gaussian

Fitting descriptive models is like doing laundry

• Ex-Gaussian fit to reaction time distribution

Marinelli et al. 2014

• Prospect theory

Wikipedia



1a. What kind of model?
• Descriptive model: summary of the data in a function 

with (usually a small number of) parameters 
• Danger: arbitrarily throwing parameters at it 

• Process model: model based on a psychological 
hypothesis of how an observer/agent makes a decision 
• Interpretable! (Nicole Rust)



Process models
• Signal detection theory

David Heeger lecture notes



Ratcliff 1978 

• Drift-diffusion model



Drugowitsch et al., 2016

Stocker and Simoncelli, 2006

Keshvari et al., 2012



1b. A special kind of process model: Bayesian 
• State of the world unknown to decision-maker

• Uncertainty! 
• Decision-maker maximizes an objective function 

• In categorical perception: accuracy 
• But could be hitting error, point rewards 

• Stronger claim: brain represents probability distributions



1b. Why Bayesian models?

• Evolutionary/philosophical: Bayesian inference optimizes 
performance or minimizes cost. The brain might have optimized 
perceptual processes. This is handwavy but very cool if true.

• Empirical: in many tasks, people are close to Bayesian. 
This is hard to argue with.

• Bill Geisler’s couch argument:

It is harder to come up with a good model sitting on 
your couch than to work out the Bayesian model.



• Basis for suboptimal models: Other models can often be 
constructed by modifying the assumptions in the Bayesian 
model. Thus, the Bayesian model is a good starting point for 
model generation.



Where does uncertainty come from?

• Noise 
• Ambiguity





Hollow-face illusion

David Mack



This hypothesis becomes 
your percept! 

Posterior 
probability 

convex concave convex concave 

Likelihood 
how probable are the 
retinal image is if the 
hypothesis were true 

convex concave 

Prior x 

how much do you expect 
the hypothesis based on 

your experiences 

∝
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Anamorphic illusion by Kurt Wenner

• Where is the ambiguity? 
• What role do priors play? 
• What happens if you view with 

two eyes, and why?





Prior	over	objects	
p(s)	

Likelihood	over	objects	given	2D	image	
L(s)	=	p(I|s)	

Kersten	and	Yuille,	2003	



Prior	over	objects	
p(s)	

Likelihood	over	objects	given	2D	image	
L(s)	=	p(I|s)	

Kersten	and	Yuille,	2003	



Examples of priors: 
• Convex faces are more common than concave ones 
• Priors at the object level (Kersten and Yuille) 
• Light usually comes from above (Adams and Ernst) 
• Slower speeds are more common (Simoncelli and Stocker) 
• Cardinal orientations are more common (Landy and 

Simoncelli)



Bayesian models are about priors

Bayesian models are about: 
• the decision-maker making the best possible decision 

(given an objective function) 
• the brain representing probability distributions

Fake news



Law of common fate

Bayesian explanation?



Generative model
Scenario 1 Scenario 2

common motion direction 

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

md1 md2 md3 md4 md5 

Scenario 1: All dots are part of the same object and they therefore always 
move together. They move together either up or down, each with 
probability 0.5.

Scenario 2: Each dot is an object by itself.  Each dot independently 
moves either up or down, each with probability 0.5.



Scenario 1: All dots are part of the same object and they therefore always 
move together. They move together either up or down, each with 
probability 0.5.

Scenario 2: Each dot is an object by itself.  Each dot independently 
moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

The likelihood of a scenario is the probability of these sensory 
observations under the scenario. What is the likelihood of Scenario 1?

Scenario 1 Scenario 2
common motion direction 

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

md1 md2 md3 md4 md5 



Scenario 1: All dots are part of the same object and they therefore always 
move together. They move together either up or down, each with 
probability 0.5.

Scenario 2: Each dot is an object by itself.  Each dot independently 
moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

The likelihood of a scenario is the probability of these sensory 
observations under the scenario. What is the likelihood of Scenario 2?

Scenario 1 Scenario 2
common motion direction 

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 
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Scenario 1: All dots are part of the same object and they therefore always 
move together. They move together either up or down, each with 
probability 0.5.

Scenario 2: Each dot is an object by itself.  Each dot independently 
moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

How many times larger is the likelihood of Scenario 1 than of Scenario 2?

Scenario 1 Scenario 2
common motion direction 

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

md1 md2 md3 md4 md5 



Scenario 1: All dots are part of the same object and they therefore always 
move together. They move together either up or down, each with 
probability 0.5.

Scenario 2: Each dot is an object by itself.  Each dot independently 
moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

Say the priors are equal. How many times larger is the posterior probability 
of Scenario 1?

Scenario 1 Scenario 2
common motion direction 

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5 

md1 md2 md3 md4 md5 



With likelihoods like these, who needs priors?

Bayesian models are about the best possible decision.



MacKay (2003), Information theory, inference, and learning 
algorithms, Sections 28.1-2



1e. How to actually do Bayesian modeling?

Good news: there is a general recipe 
that you just need to follow.



The four steps of Bayesian modeling 

STEP 1: GENERATIVE MODEL 

a)  Draw a diagram with each node a variable and each arrow a 
statistical dependency. Observation is at the bottom.  

b)  For each variable, write down an equation for its probability 
distribution. For the observation, assume a noise model. For 
others, get the distribution from your experimental design. If 
there are incoming arrows, the distribution is a conditional one. 

STEP 2: BAYESIAN INFERENCE (DECISION RULE) 

a)  Compute the posterior over the world state of interest given an observation. The optimal observer 
does this using the distributions in the generative model. Alternatively, the observer might assume 
different distributions (natural statistics, wrong beliefs). Marginalize (integrate) over variables other 
than the observation and the world state of interest. 

b)  Specify the read-out of the posterior. Assume a utility function, then maximize expected utility under 
posterior. (Alternative: sample from the posterior.) Result: decision rule (mapping from observation to 
decision). When utility is accuracy, the read-out is to maximize the posterior (MAP decision rule).  

STEP 3: RESPONSE PROBABILITIES 

For every unique trial in the experiment, compute the probability that the observer will choose each 
decision option given the stimuli on that trial using the distribution of the observation given those stimuli 
(from Step 1) and the decision rule (from Step 2).  
 

•  Good method: sample observation according to Step 1; for each, apply decision rule; tabulate 
responses. Better: integrate numerically over observation. Best (when possible): integrate analytically. 

•  Optional: add response noise or lapses.  
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STEP 4: MODEL FITTING AND MODEL COMPARISON 

a)  Compute the parameter log likelihood, the log probability of the subject’s 
actual responses across all trials for a hypothesized parameter 
combination. 

b)  Maximize the parameter log likelihood. Result: parameter estimates and 
maximum log likelihood. Test for parameter recovery and summary 
statistics recovery using synthetic data. 

c)  Obtain fits to summary statistics by rerunning the fitted model. 
d)  Formulate alternative models (e.g. vary Step 2). Compare maximum log 

likelihood across models. Correct for number of parameters (e.g. AIC). 
(Advanced: Bayesian model comparison, uses log marginal likelihood of 
model.) Test for model recovery using synthetic data.  

e)  Check model comparison results using summary statistics. 
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World state of interest	

Stimulus	

Observation	

Ma, Kording, 
Goldreich, 

Bayesian modeling of 
behavior 

This will be a book 
published by Oxford 

University Press. 
It will appear in 2018. 

Really. 

Sorry Konrad for my 
procrastination!! 



Example: auditory localization task



Step 1: Generative model 
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Step 2: Inference, deriving the decision rule

Prior Likelihood



Does the model deterministically predict the posterior for a 
given stimulus and given parameters?





Step 3: Response probabilities (predictions for 
your behavioral experiment)

p ŝ s( )

Decision rule: mapping x→ ŝ
But x is itself a random variable for given s

Therefore     is a random variable for given sŝ
Set	size	1	

Es*ma*on	error	
0	-π	 π	

Set	size	8	

0	-π	 π	 ŝ
Can compare this to data!!



The four steps of Bayesian modeling 

STEP 1: GENERATIVE MODEL 

a)  Draw a diagram with each node a variable and each arrow a 
statistical dependency. Observation is at the bottom.  

b)  For each variable, write down an equation for its probability 
distribution. For the observation, assume a noise model. For 
others, get the distribution from your experimental design. If 
there are incoming arrows, the distribution is a conditional one. 

STEP 2: BAYESIAN INFERENCE (DECISION RULE) 

a)  Compute the posterior over the world state of interest given an observation. The optimal observer 
does this using the distributions in the generative model. Alternatively, the observer might assume 
different distributions (natural statistics, wrong beliefs). Marginalize (integrate) over variables other 
than the observation and the world state of interest. 

b)  Specify the read-out of the posterior. Assume a utility function, then maximize expected utility under 
posterior. (Alternative: sample from the posterior.) Result: decision rule (mapping from observation to 
decision). When utility is accuracy, the read-out is to maximize the posterior (MAP decision rule).  

STEP 3: RESPONSE PROBABILITIES 

For every unique trial in the experiment, compute the probability that the observer will choose each 
decision option given the stimuli on that trial using the distribution of the observation given those stimuli 
(from Step 1) and the decision rule (from Step 2).  
 

•  Good method: sample observation according to Step 1; for each, apply decision rule; tabulate 
responses. Better: integrate numerically over observation. Best (when possible): integrate analytically. 
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p Ĉ = 1| x( ) = Prx|s;σ N x;µ1,σ

2 +σ 1
2( ) > N x;µ2 ,σ 2 +σ 2

2( )( )

STEP 4: MODEL FITTING AND MODEL COMPARISON 

a)  Compute the parameter log likelihood, the log probability of the subject’s 
actual responses across all trials for a hypothesized parameter 
combination. 

b)  Maximize the parameter log likelihood. Result: parameter estimates and 
maximum log likelihood. Test for parameter recovery and summary 
statistics recovery using synthetic data. 

c)  Obtain fits to summary statistics by rerunning the fitted model. 
d)  Formulate alternative models (e.g. vary Step 2). Compare maximum log 

likelihood across models. Correct for number of parameters (e.g. AIC). 
(Advanced: Bayesian model comparison, uses log marginal likelihood of 
model.) Test for model recovery using synthetic data.  

e)  Check model comparison results using summary statistics. 
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Bayesian models are about: 
• the decision-maker making the best possible decision 

(given an objective function) 
• the brain representing probability distributions



Maloney and Mamassian, 2009

Bayesian transfer

Ma and Jazayeri, 2014

Different degrees of 
probabilistic computation

Does the brain represent probability distributions?



Part 2: Model fitting



2a. What to minimize/maximize when fitting parameters? 
2b. What fitting algorithm to use? 
2c. Validating your model fitting method



2a. What to minimize/maximize when 
fitting a model?



Try #1: Minimize sum squared error

Only principled if your model is linear 
Otherwise arbitrary and suboptimal 



Try #2: Maximize likelihood

Output of Step 3:  
p(response | stimulus, parameter combination)

Likelihood of parameter combination 
= p(data | parameter combination)

= p responsei stimulusi ,  parameter combination( )
trials i
∏





Parameter trade-offs

Shen and Ma, http://www.biorxiv.org/content/early/
2017/06/22/153650
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Van den Berg and Ma, data from http://www.biorxiv.org/
content/early/2017/06/18/151365 



2b. What fitting algorithm to use?

https://arxiv.org/abs/1705.04405

#usebads !

Bayesian Adaptive Direct Search









Model fitting best practices
• If you can, maximize the likelihood (probability of single-

trial responses) if you can.  
• Do not minimize squared error! 
• Do not fit summary statistics (but the raw data)! 

• Use more than one algorithm 
• Grid search 
• Fmincon 
• BADS 

• Multistart



2c. Validating your method: 
Parameter recovery



Jenn Laura Lee



Part 3: Model comparison



3a. Choosing a model comparison metric 
3b. Validating your model comparison method 
3c. Factorial model comparison 
3d. Absolute goodness of fit 
3e. Heterogeneous populations



3a. Choosing a model comparison 
metric



Try #1: Visual similarity to the data

Shen and Ma, 2016

Fine, but not very quantitative



Try #2: R2

• Just don’t do it 
• Unless you have only linear models 

• Which almost never happens



From Ma lab survey by Bas van Opheusden, 201703

Try #3: Likelihood-based metrics

Good! 
Problem: there are many!



Metrics based on the full likelihood function (often 
sampled using Markov Chain Monte Carlo): 
• Marginal likelihood (model evidence, Bayes’ factor)  
• Watanabe-Akaike Information criterion

Metrics based on maximum likelihood: 
• Akaike Information Criterion (AIC or AICc) 
• Bayesian Information Criterion (BIC)

Cross-validation can be either



Metrics based on prediction: 
• Akaike Information Criterion (AIC or AICc) 
• Watanabe-Akaike Information criterion 
• Most forms of cross-validation

Metrics based on explanation: 
• Bayesian Information Criterion (BIC) 
• Marginal likelihoods (model evidence, Bayes’ factors)



Practical considerations: 
• No metric is always unbiased for finite data.  
• AIC tends to underpenalize free parameters, BIC 

tends to overpenalize. 
• Do not trust conclusions that are metric-

dependent. Report multiple metrics if you can.



Devkar, Wright, Ma 2015



3b. Model recovery

Challenge: your model comparison metric and how you 
compute it might have issues. How to validate it?



Devkar, Wright, Ma, Journal of Vision, in press
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Devkar, Wright, Ma, Journal of Vision, in press
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Model recovery
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Will Adler, http://www.biorxiv.org/content/early/2016/12/11/093203 



3c. Factorial model comparison

Challenge: how to avoid “handpicking” 
models?



• Models often have many “moving parts”, components 
that can be in or out 

• Similar to factorial design of experiments, one can mix 
and match these moving parts. 

• References: 
• Acerbi, Vijayakumar, Wolpert 2014 
• Van den Berg, Awh, Ma 2014 
• See also Contributed Talk #14 (Mingyu Song)

3c. Factorial model comparison





Van den Berg, Awh, Ma 2014



Challenge: how to summarize the results?

Shen and Ma, http://www.biorxiv.org/content/early/2017/06/22/153650 



3d. Absolute goodness of fit

Challenge: the best model is not 
necessarily a good model.



Absolute goodness of fit
• How close is the best model to the data? 
• Method 1: Visual inspection (model checking)

Shen and Ma, 2016



3d. Absolute goodness of fit
• Method 2: Deviance / negative entropy 

• There is irreducible, unexplainable variation in the data 
• This sets an upper limit on the goodness of fit of any 

model: negative entropy 
• How far away is a model from this upper bound? 
• Wichmann and Hill (2001) 
• Shen and Ma (2016)



Shen and Ma (2016)



3e. Hierarchical model selection

Challenge: what if different subjects 
follow different models? 

(heterogeneity in the population)



• Returns probability that each model is the most 
common one in a population 

• Returns posterior probability for each model 
• Matlab code available online! 
• Example application: Poster T25 (Maija Honig)

Consider all possible partitions of your population

Neuroimage, 2009

Neuroimage, 2014



1a. What kind of model - 
descriptive or process? 
1b. A special kind of process 
model - Bayesian 
1c. Prior examples: visual 
illusions 
1d. Likelihood example: 
Gestalt perception 
1e. How to actually do 
Bayesian modeling?

2a. What to minimize/
maximize when fitting 
parameters? 
2b. What fitting 
algorithm to use? 
2c. Validating your 
model fitting method

3a. Choosing a model 
comparison metric 
3b. Validating your 
model comparison 
method 
3c. Factorial model 
comparison 
3d. Absolute 
goodness of fit 
3e. Heterogeneous 
populations

Model building Model fitting Model comparison

Good job everyone!!


